圖5:
COB光源的內(nèi)部溫度分布圖5是該文根據(jù)試驗數(shù)據(jù)并結(jié)合仿真得出的,從圖中可以看到,熒光膠的溫度可達(dá)186℃,但芯片溫度只有49.5℃。芯片的溫度較低是因為芯片直接貼裝到鋁基板上方,芯片的熱量可通過基板快速傳遞到散熱器上,因此
COB光源的芯片溫度遠(yuǎn)低于芯片允許的最高結(jié)溫。紫光燈珠二、COB的色溫和顯色性較一般單芯片封裝的LED燈珠要更好?COB和單顆LED燈珠所使用的封裝材料并沒有本質(zhì)上的區(qū)別紫光燈珠
小結(jié)
COB光源在封裝上采用的是將芯片直接貼裝到基板上方,熱阻較SMD器件要小,有利于芯片散熱,實際工作中芯片的結(jié)溫遠(yuǎn)低于芯片允許的最高結(jié)溫。由于光源采用多芯片排布,可在較小發(fā)光面實現(xiàn)高流明密度輸出。光源工作時,熒光粉和硅膠會吸收一部分光轉(zhuǎn)換成熱,高光通量密度輸出會導(dǎo)致發(fā)光面熱量較為集中,導(dǎo)致發(fā)光面的溫度較高。如果采用熱電偶直接測量發(fā)光面的溫度,熱電偶的探頭也會吸光轉(zhuǎn)換成熱,使溫度測量值偏高。。若非要說有,也是由材料和生產(chǎn)工藝的好壞決定的,與產(chǎn)品形態(tài)無關(guān)。所以這個論斷也沒有依據(jù)。通過石墨烯復(fù)合散熱材料的作用,分別從提高熱傳導(dǎo)、儲熱均溫、增強熱輻射散熱三個方面綜合提升散熱效率30%以上,同時結(jié)合專業(yè)的散熱器結(jié)構(gòu)設(shè)計,系統(tǒng)性解決
COB光源熱密度集中的問題,從而發(fā)揮
COB光源的優(yōu)勢特性,保證使用壽命的同時,大幅提升產(chǎn)品性能。
紫光燈珠步驟4)中,熒光膠16平鋪后,熒光膠16的高度超過第一層圍壩14的頂部的高度,且低于第二層圍壩15的頂部的高度。也就是說圖4:樣品紅外熱成像圖從圖中可以看到,藍(lán)色樣品的發(fā)光面最高溫度為93.6℃,2700K的發(fā)光面最高溫度為124.5℃、6500K的發(fā)光面最高溫度為107.8℃。溫度的差異可如下解釋,白光是由芯片產(chǎn)生的藍(lán)光激發(fā)熒光粉混成白光,在藍(lán)光激發(fā)熒光粉的過程中,熒光粉和硅膠會吸收一部分光轉(zhuǎn)化成熱,經(jīng)過測量可知藍(lán)色樣品的光電轉(zhuǎn)換效率為41.6%,2700K樣品為32.2%,6500K為38.5%,2700K樣品的光電轉(zhuǎn)換效率最低,主要原因是2700K樣品的熒光粉使用量多于6500K,在藍(lán)光激發(fā)熒光粉過程中有更多藍(lán)光轉(zhuǎn)換成熱量,相關(guān)參數(shù)參考表2。,通過本
COB光源制作方法制作的
COB光源,其熒光膠16的厚度比常規(guī)
COB光源的大,這樣使得通過本
COB光源制作方法制作的
COB光源緩沖作用更好,能夠更好的保護(hù)內(nèi)部的導(dǎo)電線13。同時,熒光膠16的高度低于第二層圍壩15的高度,避免了熒光膠16溢出圍壩的情況發(fā)生。
紫光燈珠目前的LED燈具整體系統(tǒng)設(shè)計對LED特性普遍不熟悉甚至是不了解(估計僅停留在節(jié)能上),導(dǎo)致整燈設(shè)計有向傳統(tǒng)“反動”的趨勢,而不是積極地向前尋求解決方案紫光燈珠的可靠性與光源的溫度密切相關(guān),由于
COB光源采用多顆芯片高密度封裝,其溫度分布、測量與SMD光源有明顯不同。本文將介紹
COB光源的溫度分布特點與其內(nèi)在機理,并對常用的溫度測量方法進(jìn)行比較。二、
COB光源的溫度分布。從市場反響來看,用戶顯然不認(rèn)同用舊產(chǎn)品形態(tài)去承載新光源技術(shù)這種“舊瓶裝新酒”的做法,從COB射燈在短暫高價后迅速降價重回“以價取勝”的尷尬,都可以看出市場對照明產(chǎn)品新形態(tài)的渴求,和對目前產(chǎn)品的失望。